
1
CIS 422/522

CIS 422/522 © S. Faulk 1

Architectural Design

Why principles work
Documenting architecture

CIS 422/522 © S. Faulk 2

Business Goals to
Architecture

Business Goals
Hardware
Software
Marketing

other

Product Planning
Economic Evaluation

Development Strategy
Marketing Strategy

Prioritization

Requirements
Capabilities

Qualities
Reusability

Architecture
Tradeoffs of
quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Goal: keep business goals and
architectural capabilities in synch

Business Goals
Time to market
Faster than competition
Low life cycle cost
New version/year Quality Requirements

Concurrent development
Performance > x
Maintainability
Easy to change, extend

Key Architectures
Module structure
Process/Deployment
Uses Structure

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Architecture Design Process

Breaking design process into a manageable set of steps:
1. Understand the goals for the system
2. Define the quality requirements
3. Design the architecture

1. Views: choose a set of views representing highest priority
quality requirements
(goals<->architectural structures<->representation)

2. Design: design to meet quality requirements
3. Documentation: communicate the design by documenting

the views and rationale (see examples)
4. Evaluate the architecture (does the design meet the

design goals?)

CIS 422/522 © S. Faulk 4

Design Goal Implications
Business Goals
• Concurrent development
• Easy to maintain
• Easy to change/evolve

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Coders

Implication: requires relatively
independent work assignments
• Dependencies are few and simple
• Structure is stable
• Likely changes affect one or few

modules
Can achieve this if:
• Things that are likely to change

are encapsulated
• Things that change together are

encapsulated together
• Interfaces are simple and well

defined
• Interfaces contain only things

unlikely to change

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Module Construction

• Detailed design goals
1. Things that are likely to change are encapsulated
2. Things that change together are encapsulated

together (independently in different modules)
3. Interfaces are simple and well defined
4. Interfaces contain only things unlikely to change

• Get the structure right, then get the details
right
– Allocate requirements to modules satisfying 1 & 2
– Define interfaces to satisfy 3 & 4

CIS 422/522 © S. Faulk 6

Principles vs. Heuristics

• Suggested a set of design principles
– Most solid first
– Information hiding
– Abstraction

• OOD gave us heuristics
– Underline the nouns
– Identify causal agents
– Identify coherent services
– Identify real-world items

• Why would you prefer one to the other? Which is
more effective?

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

CIS 422/522 © S. Faulk 8

Information Hiding Decompositon

• Decompose recursively
– If a module holds decisions that are likely to change

independently, then decompose it into submodules
– Decisions that are likely to change together are allocated to the

same submodule
– Decisions that change independently should be allocated to

different submodules
• Stopping criteria

– Each module contains only things likely to change together
– Each module is simple enough to be understood fully, small

enough that it makes sense to throw it away rather than re-do
• Define the Interfaces

– Anything that other modules should not depend on become
secrets of the module (e.g., implementation details)

– If the module has an interface, only things not likely to change
can be part of the interface

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Summary

• Heuristics and patterns are guidelines
– Do not guarantee qualities
– Must understand how and why they work to apply

effectively
• Principles are more direct – achieve qualities

by construction
• Good design requires careful thinking

– Which goals are we trying to achieve
– How design decisions address those goals

CIS 422/522 © S. Faulk 10

Documenting a Module Structure

Communicating Architectural Decisions

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Architecture Development Process

Building architecture to address business goals:
1. Understand the goals for the system
2. Define the quality requirements
3. Design the architecture

1. Views: which architectural structures should we use?
2. Design: how do we decompose the system?
3. Documentation: how do we communicate design decisions?

4. Evaluate the architecture (is it a good design?)

CIS 422/522 © S. Faulk 12

Purpose and Audience

• To understand what to communicate,
consider who will use it and for what purpose
– Coders/maintainers: defines the build-to spec.

• Where to put/find specific parts of the system (e.g.,
where functionality is implemented)

• Embodies system qualities as design decisions
• Constrains detailed design and implementation

– Quality stakeholders
• How the system satisfies design goals
• Why specific design decisions were made

– Testers: which parts should be tested to establish
specific qualities

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Communicating Architecture

• Provide a set of views addressing key qualities
• For each architectural view deployed

– Which architectural structures are used (components,
relations, and interfaces)

– Which quality requirements are being addressed in the
structure (why)

• Within a given structure
– How to use/navigate the structure to find specific

information
– What design decisions are made
– Rationale for important decisions

CIS 422/522 © S. Faulk 14

Example: Module Structure
Documentation

• Module Guide
– Documents the module structure:

• The set of modules and the responsibility of each module in terms of
the module’s secret

• The “submodule-of relationship”
– Document purpose(s)

• Guide for finding the module responsible for each aspect of the system
behavior

• Provides a record of design decisions (rationale)
• Module Interface Specifications

– Documents all assumptions user’s can make about the module’s
externally visible behavior (of leaf modules)

• Access programs, events, types, undesired events
• Design issues, assumptions

– Document purpose(s)
• Provide all the information needed to write a module’s programs or use

the programs on a module’s interface

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Address Book Modular Structure

AB

AddressBookGUI ABControl ABModel

BookControl EntryControl

Submodule-of

Module

Book
Model

Entry
Model

CIS 422/522 © S. Faulk 16

Excerpts from a Module Guide (1)

1. AddressBookModel
The ABModel modules include programs that need to be changed if the data
model (types of data and relationships among data) is changed. Its secrets
include how address books and their associated data are stored and retrieved.
1.1 Book Model
Includes programs that must be changed if the data and relations associated with
an address book changes.
Services
Provides the services needed to operate on address books as a whole.
Secret
Algorithms and data structures used create and maintain address books or
retrieve information about address books.
1.2 Entry Model
Includes programs that must be changed if the entity model or its implementation
are changed.

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Excerpts From Module Guide (2)

2. AddressBookControl Modules
The ABControl modules consist of those programs that need to be changed if the operations
on address books or address book entries are changed. Its secrets include the how the
application implements the set of address book operations specified in the requirements.

2.1. BookControl
The Book Control modules consist of those programs that need to be changed if the
operations on address books change. Its secrets include the algorithms used and how the
BookControl operations use the ABModel to set or retrieve information about address
books.

2.1.1 SortAB
Service
Provides services to sort the entries in an address book by field values.
Secrets
Algorithms used to compare and sort entries. How this module uses the services provided
by the ABModel.

CIS 422/522 © S. Faulk 18

Specifying Abstract Interfaces

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Module Interface Design

• Architectural design: get the structure right, then
get the details right

• Module structure: allocated requirements to
modules with high-cohesion, loose coupling
– Those that change together are in the same module
– Those that change independently are in different

modules
• Interface design must follow through

– Encapsulate likely changes
– Provide coherent set of services

• Again: must create the design the communicate
the design decisions

CIS 422/522 © S. Faulk 20

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Notional Modules

Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Users

Creator

Contract

CIS 422/522 © S. Faulk 22

Module Interface Design Goals

General goals addressed in module interface design
1.Control dependencies: apply information hiding

– Encapsulate anything other modules should not depend on
– Hide design decisions and requirements that might change

(data structures, algorithms, assumptions)
2.Provide services: apply abstraction

– Provide all the capabilities needed by the module’s users
– Provide no more than is needed (reduce complexity)
– Provide problem appropriate abstraction (understandability)
– Provide reusable abstractions

•Specific goals need to be captured (e.g., in the module
guide and interface design documents)

12
CIS 422/522

CIS 422/522 © S. Faulk 23

Which Principle to Use

• Use abstraction when the issue is what
should be on the interface (form and content)

• Use information hiding when the issue is what
information should not be on the interface
(visible or accessible)

• AddressBook Model example

CIS 422/522 © S. Faulk 24

Need for Precise Interface Specifications

• Informal description is not enough to write the
software

• To support independent development, need a
precise interface specification
– For the implementer: describes the requirements the

module must satisfy
– For other developers: defines everything you need to

know to use the module’s services correctly
– For tester: specifies the range of acceptable behaviors

for unit test
• The interface specification defines a contract

between the module’s developers and its users

13
CIS 422/522

CIS 422/522 © S. Faulk 25

A Simple Stack Module

• A simple integer stack
• The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.

– push: push integer on stack top
– pop: remove top element
– peek: get value of top element

• The secrets (encapsulated) any
details that might change from one
implementation to another

– Data structures, algorithms
– Details of class/object structure

• Is this enough to define a
contract?

stack
peek(int)

push(int)

pop()

CIS 422/522 © S. Faulk 26

What is an abstract interface?

• Preference for an abstract interface
specification

• An abstract interface defines the set of
assumptions that one module can make
about another

• While detailed, an abstract interface
specification does not describe the
implementation
– Does not specify algorithms, private data, or data

structures (one-to-many)
– Preserves the module’s secrets

14
CIS 422/522

CIS 422/522 © S. Faulk 27

A Method for Specifying Interfaces

• Define services provided and services needed
(assumptions)

• Decide on syntax and semantics for accessing
services

• In parallel
– Define access method effects
– Define terms and local data types
– Define visible states of the module
– Record design decisions

• Define test cases and use them to verify access
methods
– Cover testing effects, parameters, exceptions
– Test both positive and error use cases

CIS 422/522 © S. Faulk 28

Data Banker
3.3. Data Banker
Service

Store wind speed data giving readers and writer
concurrent access

Secret
The algorithm and data structure used to store and
retrieve data

Associated Changes
None

Init
Read
Write

Producer Side
Tasks (sensors)

Consumer Side
Tasks

Data
Banker

15
CIS 422/522

CIS 422/522 © S. Faulk 29

DB Example

CIS 422/522 © S. Faulk 30

Benefits Good Module Specs

• Enables development of complex projects:
– Support partitioning system into separable modules
– Complements incremental development approaches

• Improves quality of software deliverables:
– Clearly defines what will be implemented
– Errors are found earlier
– Error Detection is easier
– Improves testability

• Defines clear acceptance criteria
• Defines expected behavior of module
• Clarifies what will be easy to change, what will be

hard to change
• Clearly identifies work assignments

16
CIS 422/522

CIS 422/522 © S. Faulk 31

For Your Projects

• Try to provide two views including a module
decomposition (if appropriate)

• Include rationale for the overall design
• Include any significant design decisions
• Expected outcomes:

– Should be able to trace from requirements to code
objects

– Should be able to understand how your design
addresses your design goals (quality
requirements, developmental goals)

CIS 422/522 © S. Faulk 32

Questions?

17
CIS 422/522

CIS 422/522 © S. Faulk 33
33© S. Faulk 2010

CIS 422/522 © S. Faulk 34

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

